Abstract
Mice lacking a functional Janus kinase 2 (JAK2) allele die embryonically, indicating the mandatory role of JAK2 in basic developmental cellular transcription. Currently, however, the downstream target genes of JAK2 are largely unknown. Here, in vitro conditions were created using a cell line lacking JAK2 expression. Microarray analysis was then used to identify genes that are differentially expressed as a result of the presence, or absence, of JAK2. The data identified 621 JAK2-dependent genes as having at least a twofold change in expression. Surprisingly, these genes did not require ligand-dependent activation of JAK2 but merely its expression in the cell. Thirty-one of these genes were found to have a greater than sevenfold change in expression levels, and a subset of these were further characterized. These genes represent a diverse cluster of ontological functions including transcription factors, signaling molecules, and cell surface receptors. The expression levels of these genes were validated by Northern blot and/or quantitative RT-PCR analysis in both the JAK2 null cells and cells expressing a JAK2-dominant negative allele. As such, this work demonstrates for the first time that, in addition to being a key mediator of ligand-activated gene transcription, JAK2 can perhaps also be viewed as a critical mediator of basal level gene expression.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.