Abstract

Predictive modeling is an emerging methodology for microarchitectural design space exploration. However, this method suffers from high costs to construct predictive models, especially when unseen programs are employed in performance evaluation. In this paper, we propose a fast predictive model-based approach for microarchitectural design space exploration. The key of our approach is utilizing inherent program characteristics as prior knowledge (in addition to microarchitectural configurations) to build a universal predictive model. Thus, no additional simulation is required for evaluating new programs on new configurations. Besides, due to employed model tree technique, we can provide insights of the design space for early design decisions. Experimental results demonstrate that our approach is comparable to previous approaches regarding their prediction accuracies of performance/energy. Meanwhile, the training time of our approach achieves 7.6–11.8× speedup over previous approaches for each workload. Moreover, the training costs of our approach can be further reduced via instrumentation technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call