Abstract
Diabetic retinopathy (DR) is a diabetes complication, which in extreme situations may lead to blindness. Since the first stages are often asymptomatic, regular eye examinations are required for an early diagnosis. As microaneurysms (MAs) are one of the first signs of DR, several automated methods have been proposed for their detection in order to reduce the ophthalmologists’ workload. Although local convergence filters (LCFs) have already been applied for feature extraction, their potential as MA enhancement operators was not explored yet. In this work, we propose a sliding band filter for MA enhancement aiming at obtaining a set of initial MA candidates. Then, a combination of the filter responses with color, contrast and shape information is used by an ensemble of classifiers for final candidate classification. Finally, for each eye fundus image, a score is computed from the confidence values assigned to the MAs detected in the image. The performance of the proposed methodology was evaluated in four datasets. At the lesion level, sensitivities of 64% and 81% were achieved for an average of 8 false positives per image (FPIs) in e-ophtha MA and SCREEN-DR, respectively. In the last dataset, an AUC of 0.83 was also obtained for DR detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.