Abstract

Thirty-eight size-segregated aerosol samples were collected in the lower troposphere over the high desert of south-central New Mexico, using cascade impactors mounted onboard two research aircraft. Four of these samples were collected in early May, sixteen in mid-July, and the remaining ones in December 1989, during three segments of the ALIVE field initiative. Analytical electron microscope analyses of aerosol deposits and individual particles from these samples were performed to physically and chemically characterize the major particulate species present in the aerosol. Air-mass trajectories arriving at the sampling area in the May program were quite different from those calculated for the July period. In general, the May trajectories showed strong westerly winds, while the July winds were weaker and southerly, consistently passing over or very near the border cities of El Paso, Texas, and Ciudad Juarez, Mexico. Aerosol samples collected during the May period were predominantly fine (0.1–0.5 μm dia.), liquid H 2SO 4 droplets. Samples from the July experiment were comprised mostly of fine, solid (NH 4) 2SO 4 or mostly neutralized sulfate particles. In both sampling periods, numerous other particle classes were observed, including many types with probable terrestrial or anthropogenic sources. The numbers of these particles, however, were small when compared with the sulfates. Composite particle types, including sulfate/crustal and sulfate/carbonaceous, were also found to be present. The major differences in aerosol composition between the May and July samples (i.e. the extensive neutralization of sulfates in the July samples) can be explained by considering the different aerosol transport pathways and the proximity of the July aerosol to the El Paso/Juarez urban plume. Winds during the December experiment were quite variable, and may have contributed to the widely varying aerosol compositions observed in these samples. When the aircraft sampled the El Paso/Juarez urban plume, high concentrations of carbonaceous particles were collected. These C-rich particles were of three distinct types, two of which showed combustion morphologies and the third an irregular morphology. Concurrent aethalometer measurements of aerosol black carbon concentration were well correlated ( r = 0.83) with the total carbonaceous particle fraction in the aerosol samples. Carbonaceous particles were not observed in abundance in any of the May or July samples (even when the winds passed over El Paso), and we attribute the high concentrations in December to increased wintertime burning of wood, fossil fuels and other combustibles in the urban area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call