Abstract

The immense biodiversity of the Atlas Mountains in North Africa might be the result of high rates of microallopatry caused by mountain barriers surpassing 4000 meters leading to patchy habitat distributions. We test the influence of geographic structures on the phylogenetic patterns among Buthus scorpions using mtDNA sequences. We sampled 91 individuals of the genus Buthus from 51 locations scattered around the Atlas Mountains (Antiatlas, High Atlas, Middle Atlas and Jebel Sahro). We sequenced 452 bp of the Cytochrome Oxidase I gene which proved to be highly variable within and among Buthus species. Our phylogenetic analysis yielded 12 distinct genetic groups one of which comprised three subgroups mostly in accordance with the orographic structure of the mountain systems. Main clades overlap with each other, while subclades are distributed parapatrically. Geographic structures likely acted as long-term barriers among populations causing restriction of gene flow and allowing for strong genetic differentiation. Thus, genetic structure and geographical distribution of genetic (sub)clusters follow the classical theory of allopatric differentiation where distinct groups evolve without range overlap until reproductive isolation and ecological differentiation has built up. Philopatry and low dispersal ability of Buthus scorpions are the likely causes for the observed strong genetic differentiation at this small geographic scale.

Highlights

  • The Mediterranean region comprises a highly diverse geographic area characterized by a variety of peninsulas and islands

  • Recent molecular data support even more fine-scaled patterns within these sub-centres; such patterns are especially known from the Iberian Peninsula e.g. [3], peninsular Italy e.g. [4] and the Balkans [5]

  • Fst estimates among groups obtained from phylogenetic analyses were overall high and mostly significant (Table 2; non significant values are due to low sample sizes in some groups)

Read more

Summary

Introduction

The Mediterranean region comprises a highly diverse geographic area characterized by a variety of peninsulas and islands. This underlying geographic structure is reflected in biogeographical patterns of the region already described by de Lattin (1949) [1] who distinguished nine Mediterranean sub-centres. These early hypotheses have largely been confirmed by genetic analyses [2]. While the European part of the Mediterranean is biogeographically relatively well understood, the Maghreb still remains largely unstudied [6]. The question emerges whether similar genetic substructures exist in NW Africa

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call