Abstract

BackgroundFor a commercially feasible microalgal triglyceride (TAG) production, high TAG productivities are required. The operational strategy affects TAG productivity but a systematic comparison between different strategies is lacking. For this, physiological responses of Nannochloropsis sp. to nitrogen (N) starvation and N-rich medium replenishment were studied in lab-scale batch and repeated-batch (part of the culture is periodically harvested and N-rich medium is re-supplied) cultivations under continuous light, and condensed into a mechanistic model.ResultsThe model, which successfully described both strategies, was used to identify potential improvements for both batch and repeated-batch and compare the two strategies on optimized TAG yields on light (amount of TAGs produced per mol of supplied PAR photons). TAG yields on light, for batch, from 0.12 (base case at high light) to 0.49 g molph−1 (at low light and with improved strain) and, for repeated-batch, from 0.07 (base case at high light) to 0.39 g molph−1 (at low light with improved strain and optimized repeated-batch settings). The base case yields are in line with the yields observed in current state-of-the-art outdoor TAG production.ConclusionsFor continuous light, an optimized batch process will always result in higher TAG yield on light compared to an optimized repeated-batch process. This is mainly because repeated-batch cycles start with N-starved cells. Their reduced photosynthetic capacity leads to inefficient light use during the regrowth phase which results in lower overall TAG yields compared to a batch process.Electronic supplementary materialThe online version of this article (doi:10.1186/s13068-016-0475-4) contains supplementary material, which is available to authorized users.

Highlights

  • For a commercially feasible microalgal triglyceride (TAG) production, high TAG productivities are required

  • The physiological response of Nannochloropsis sp. to nitrogen (N) starvation and N-rich medium replenishment was investigated in lab-scale batch and repeated-batch cultivations and condensed into a mechanistic model that describes photosynthesis and carbon-partitioning during N-starvation [12] and during recovery after N-rich medium replenishment in flat panel photobioreactors

  • The model developed by [12] for batch TAG production with Scenedesmus obliquus in flat panel photobioreactors was further developed to describe the effect of nitrogen (N)-starvation and N-rich medium replenishment on photosynthesis and carbon partitioning in batch and repeated-batch cultivations of Nannochloropsis sp

Read more

Summary

Introduction

For a commercially feasible microalgal triglyceride (TAG) production, high TAG productivities are required. To nitrogen (N) starvation and N-rich medium replenishment were studied in lab-scale batch and repeated-batch (part of the culture is periodically harvested and N-rich medium is re-supplied) cultivations under continuous light, and condensed into a mechanistic model. TAG production is often carried out in a two-phase process in which biomass is first produced under nitrogen (N) replete conditions and TAGs are accumulated under N-depleted conditions in batch-operated cultivations [7, 8]. To nitrogen (N) starvation and N-rich medium replenishment was investigated in lab-scale batch and repeated-batch cultivations and condensed into a mechanistic model that describes photosynthesis and carbon-partitioning during N-starvation [12] and during recovery after N-rich medium replenishment in flat panel photobioreactors. The model was used to identify potential improvements for both batch and repeated-batch processes and to compare the two processes on optimized TAG yields on light (i.e., amount of TAGs produced per mol of supplied photons in the PAR range)

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.