Abstract

A polydimethylsiloxane microfluidic chip has been developed for the estimation of toxic heavy metals based on measurement of mobility of marine microalgae. The chip is mainly composed of an upstream concentration gradient generator and a downstream perfusion-based chemotatic module. The processes of toxic liquid dilution and diffusion, microalgal culturing, cell stimulation, and online screening can be integrated in this chip, which makes it an attractive approach to simplify toxicity testing procedures. The microalgal motility was adopted as a microfluidic bioassay signal and was evaluated as the percentage of motile cells, curvilinear velocity, average path velocity, and straight line velocity. Two mobile marine microalgae, Platymonas subcordiformis and Platymonas helgolandica var. tsingtaoensis, were confined in the chemotatic module and stimulated by the eight concentration gradients of Cu and Cd generated by the concentration gradient generator. In all cases, a toxic response was detected (i.e., a dose-related inhibition of motility was observed). Only 1.5 h was needed to predict EC(50) values. Thus, the microfluidic chip developed was proved to be useful as a simple and rapid approach in heavy metal detection and might be expanded as a conventional test method in environmental toxicity assessment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call