Abstract

The persistence of heavy metals (HMs) in the environment causes adverse effects to all living organisms; HMs accumulate along the food chain affecting different levels of biological organizations, from cells to tissues. HMs enter cells through transporter proteins and can bind to enzymes and nucleic acids interfering with their functioning. Strategies used by microalgae to minimize HM toxicity include the biosynthesis of metal-binding peptides that chelate metal cations inhibiting their activity. Metal-binding peptides include genetically encoded metallothioneins (MTs) and enzymatically produced phytochelatins (PCs). A number of techniques, including genetic engineering, focus on increasing the biosynthesis of MTs and PCs in microalgae. The present review reports the current knowledge on microalgal MTs and PCs and describes the state of art of their use for HM bioremediation and other putative biotechnological applications, also emphasizing on techniques aimed at increasing the cellular concentrations of MTs and PCs. In spite of the broad metabolic and chemical diversity of microalgae that are currently receiving increasing attention by biotechnological research, knowledge on MTs and PCs from these organisms is still limited to date.

Highlights

  • The ability of some microbes to thrive in heavy metal-polluted environments is attracting the interest of the biotechnological industry

  • The far greater genetic, enzymatic, and chemical diversity found in microalgae, compared to terrestrial plants, animals, or fungi (Keeling, 2013), coupled with the ability of microalgae to grow with sunlight and inorganic nutrients, makes photosynthetic microorganisms the best candidates for biotechnological applications and heavy metals (HMs) remediation

  • This includes both polypeptides directly chelating HMs, such as metallothioneins (MTs) and phytochelatins (PCs), as well as compounds biosynthesized to decrease the oxidative stress induced by HMs (Cobbett and Goldsbrough, 2002)

Read more

Summary

INTRODUCTION

The ability of some microbes to thrive in heavy metal-polluted environments is attracting the interest of the biotechnological industry. Eukaryotic microalgae are present in six different supergroups (Archaeplastida, Hacrobia, Rhizaria, Excavata, Alveolata, and Heterokontophyta), resulting far more genetically diverse than either terrestrial plants (Archaeplastida), or fungi and animals (Opisthokonta) This leads to a greater diversity in primary and secondary metabolites including organic ligands and metal-binding proteins for microalgae. Massive sequencing of microalgal genomes and transcriptomes (Keeling et al, 2014; Blaby-Haas and Merchant, 2019), carried out in the last decade, provided scientists with a plethora of information available on potential proteins and biosynthetic pathways involved in HM detoxification This includes both polypeptides directly chelating HMs, such as metallothioneins (MTs) and phytochelatins (PCs), as well as compounds biosynthesized to decrease the oxidative stress induced by HMs (Cobbett and Goldsbrough, 2002). Current knowledge on microalgal metal-binding proteins is described, and the state of art of the application of metal-binding proteins in biotechnological applications, with special attention devoted to phycoremediation, is discussed

INTERACTIONS BETWEEN MICROALGAE AND HEAVY METALS
METALLOTHIONEINS IN THE MICROALGAL REALM
GLUTATHIONE AND PHYTOCHELATINS IN THE MICROALGAL REALM
No of proteins
METALLOTHIONEINS AND PHYTOCHELATINS IN HEAVY METAL PHYCOREMEDIATION
Lead Mercury Nickel Zinc
Live Live Live Live Live Live
CURRENT ANALYTICAL TECHNIQUES FOR THE DETERMINATION OF MTs AND PCs
CHALLENGES FOR GENETIC ENGINEERING
Findings
AUTHOR CONTRIBUTIONS
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.