Abstract

Metal ions are known to play various roles in living organisms; therefore, the detection of metal ions in water resources is essential for monitoring health and environmental conditions. In contrast to artificially fabricated materials and devices, biological-friendly materials such as microalgae have been explored for detecting toxic chemicals by employing fluorescence emissions and biophotovoltaic fuel cells. However, complicated fabrication, long measurement time, and low sensitivity remain the greatest challenge due to the minimal amount of bioelectricity generated from whole-cell microalgae. Herein we report the novel concept of a microalgae living biosensor by enhancing photocurrent through nanocavities formed between copper (Cu) nanoparticles and the Cu-electrode beneath. The strong energy coupling between plasmon cavity modes and excited photosynthetic fluorescence from Chlorella demonstrated that photoelectrical efficiency could be significantly amplified by more than two orders of magnitude through nanocavity confinement. Simulation results reveal that substantial near-field enhancements could help confine the electric field to the electrodes. Finally, the microalgae sensor was exploited to detect various light and heavy metal ions with a breakthrough detection limit of 50 nM. This study is envisioned to provide inspirational insights on nanocavity-enhanced electrochemistry, opening new routes for biochemical detection, water monitoring, and sustainable optoelectronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.