Abstract
The major aetiological agent of human bacterial meningitis is Neisseria meningitidis. During the course of disease and host colonization, the bacterium has to withstand limited oxygen availability. Nitrogen oxide and nitrogen oxyanions are thought to be present, which may constitute an alternative sink for electrons from the N. meningitidis respiratory chain. A partial denitrification pathway is encoded by the aniA nitrite reductase gene and the norB nitric oxide reductase gene. Analysis of the completed genome sequences of two N. meningitidis strains is used to generate a model for the membrane-associated respiratory chain of this organism. Analysis of aniA expression indicates it to be controlled primarily by oxygen and secondarily by nitrite. The ability of N. meningitidis to denitrify relies on microaerobic growth conditions. Here we show that under microaerobic conditions nitrite supplements oxygen as an alternative respiratory substrate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.