Abstract

An obligate methanotrophic bacterium, strain MTS, was isolated from a methane-fed microaerobic denitrifying bioreactor. 16S rRNA and DNA-DNA hybridization analysis revealed that this organism was most closely related to Methylocystis parvus, a Type II methanotroph, belonging to the α-subclass of the Proteobacteria. The metabolism of the bacterium under microaerobic and anaerobic conditions was studied by (13) C-NMR. (13) C-labelled poly-β-hydroxybutyrate (PHB) formation occurred in cell suspensions incubated with (13) C-labelled methane at low (5-10%) oxygen concentration. Under these conditions low levels of succinate, acetate and 2,3-butanediol were formed and excreted into the culture medium. Intracellular PHB degradation was observed in intact cells under anaerobic conditions in the absence of an exogenous carbon source during a long-term incubation of 90 days. Multiple (13) C-labelled β-hydroxybutyrate, butyrate, acetate, acetone, isopropanol, 2,3-butanediol and succinate were identified as products in in vivo(13) C-NMR spectra and in the spectra of culture medium during the dynamic PHB degradation. The isolated obligate methanotroph clearly shows a fermentative metabolism of PHB under anaerobic conditions. The excreted products may serve as substrates for denitrifying bacteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.