Abstract

A novel, precise, three-dimensional shape measurement method using scanning electron microscopy (SEM) and Moiré topography has been proposed. The possibility for measurement of wavelength order using this method is discussed based on results of experiments to confirm the principle. In these experiments, a high-resolution method based on the new measurement method is proposed, employing fringe scanning technology for the shadow Moiré. The optical system is constructed with a SEM using backscattering electrons, a grating holder that can shift the position of the grating, and a grating having a pitch of 120 µm. Measured results using a bearing ball as a sample show that high resolution measurements of around one micrometre can be performed using the fringe scanning method and the new measurement arrangement. An error analysis of the method is performed to enable improvement of the measuring accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.