Abstract

BackgroundAlthough there has been a decline in the number of malaria cases in Zimbabwe since 2010, the disease remains the biggest public health threat in the country. Gwanda district, located in Matabeleland South Province of Zimbabwe has progressed to the malaria pre-elimination phase. The aim of this study was to determine the spatial distribution of malaria incidence at ward level for improving the planning and implementation of malaria elimination in the district.MethodsThe Poisson purely spatial model was used to detect malaria clusters and their properties, including relative risk and significance levels at ward level. The geographically weighted Poisson regression (GWPR) model was used to explore the potential role and significance of environmental variables [rainfall, minimum and maximum temperature, altitude, Enhanced Vegetation Index (EVI), Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), rural/urban] and malaria control strategies [indoor residual spraying (IRS) and long-lasting insecticide-treated nets (LLINs)] on the spatial patterns of malaria incidence at ward level.ResultsTwo significant clusters (p < 0.05) of malaria cases were identified: (1) ward 24 south of Gwanda district and (2) ward 9 in the urban municipality, with relative risks of 5.583 and 4.316, respectively. The semiparametric-GWPR model with both local and global variables had higher performance based on AICc (70.882) compared to global regression (74.390) and GWPR which assumed that all variables varied locally (73.364). The semiparametric-GWPR captured the spatially non-stationary relationship between malaria cases and minimum temperature, NDVI, NDWI, and altitude at the ward level. The influence of LLINs, IRS and rural or urban did not vary and remained in the model as global terms. NDWI (positive coefficients) and NDVI (range from negative to positive coefficients) showed significant association with malaria cases in some of the wards. The IRS had a protection effect on malaria incidence as expected.ConclusionsMalaria incidence is heterogeneous even in low-transmission zones including those in pre-elimination phase. The relationship between malaria cases and NDWI, NDVI, altitude, and minimum temperature may vary at local level. The results of this study can be used in planning and implementation of malaria control strategies at district and ward levels.

Highlights

  • There has been a decline in the number of malaria cases in Zimbabwe since 2010, the disease remains the biggest public health threat in the country

  • This paper reports on the spatial distribution of malaria incidence in 2015 based on health facility cases and related risk factors, in order to strengthen control measures in the pre-elimination phase of Gwanda district, Matabeleland South Province, Zimbabwe

  • The analysis showed that assuming that other variables vary at local level substantially improves the geographically weighted Poisson regression (GWPR) model performance

Read more

Summary

Introduction

There has been a decline in the number of malaria cases in Zimbabwe since 2010, the disease remains the biggest public health threat in the country. Gwanda district, located in Matabeleland South Province of Zimbabwe has progressed to the malaria pre-elimination phase. Malaria remains one of the biggest health problems within the tropical region despite the improvements in malaria control programmes at a global scale. Consistent with the national trend, Gwanda district located in the Matabeleland South Province in Zimbabwe has progressed to malaria pre-elimination phase. A malaria pre-elimination capacity assessment study conducted in Matabeleland South Province in 2011 reported malaria positivity rates of 8% and Anopheles larvae scoop of four for Gwanda district [4]. Malaria control in Gwanda district is mainly through indoor residual spraying (IRS), use of long-lasting insecticidal nets (LLINs) and larviciding [5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call