Abstract
Microcapsule self-healing has become popular for microcrack repairing in resin mineral composites, and the cracking performance of microcapsule directly affect their repair efficiency on the matrix material. In this study, the problem of how the volume of microcapsule core affects the cracking performance of microcapsule is addressed. Based on the extended finite element method, the representative volume element (RVE) considering the volume of microcapsule core is established by combining the cohesive zone model and the fluid cavity model. On this basis, a numerical simulation study of the cracking performance of RVE with different volumes of microcapsule core under dynamic loading is conducted to investigate the triggered cracking process of the fully filled and incompletely filled microcapsules besides their cracking behavior, respectively. This study provides a reference for the preparation of microcapsules and the numerical simulation of microcapsule mechanical properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Modelling and Simulation in Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.