Abstract

Enhanced fracture resistance of textured alumina is ascribed to crack deflection along grain boundaries. In this work, we quantify and compare the micro-scale fracture toughness of textured alumina grains and grain boundaries by micro-bending tests. Notched micro-cantilevers were milled from single alumina textured grains (perpendicular to the [0001] direction) and across several textured grains (along the [0001] direction), using a focused ion beam technique. Bending tests were performed with a nanoindenter. A shape function for notched pentagonal-shaped cantilevers was developed using finite element analysis. The critical stress intensity factor at the notch tip was determined based on the measured fracture loads. The micro-scale fracture toughness of the textured alumina grain boundaries (2.3 ± 0.2 MPa m1/2) was about 30% lower than that of the grains (3.3 ± 0.2 MPa m1/2). These findings at the micro-scale are paramount for understanding the macroscopic fracture behaviour of textured alumina ceramics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call