Abstract

White-light scanning interferometry (WLSI) has been widely used in micro-profile measurement such as Micro-Electro-Mechanical Systems (MEMS) and Computer Generated Hologram (CGH) diffractive elements. It does not contain phase ambiguity problem which is often encountered in monochromatic wavelength interferometry. This paper presents an algorithm based on windowed Fourier transform (WFT) to extract the phase of a white-light interferogram and compensates for the difference in zero optical path difference (ZOPD) position in WLSI. With the WFT technique, the center wavelength of a white-light source and the phase of a white-light interferogram could be retrieved simultaneously. The effect of noise, scanning interval of a piezoelectric transducer (PZT) and the window size of WFT are also analyzed. Both simulated and experimental results show that the proposed algorithm has good noise immunity and is able to accurately measure the micro-profile of a specimen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call