Abstract

Organic dust flames deal with a field of science in which many complicated phenomena like pyrolysis or devolatization of solid particles and combustion of volatile particles take place. One-dimensional flame propagation in cloud of fuel mixture is analyzed in which flame structure is divided into three zones. The first zone is preheat zone in which rate of the chemical reaction is small and transfer phenomena play significant role in temperature and mass distributions. In this model, it is assumed that particles pyrolyze first to yield a gaseous fuel mixture. The second zone is reaction zone where convection and vaporization rates of the particles are small. The third zone is convection zone where diffusive terms are negligible in comparison of other terms. Non-zero Biot number is used in order to study effect of particles thermal resistance on flame characteristics. Also, effect of particle size on combustion of micro organic dust is investigated. According to obtained results, it is understood that both flame temperature and burning velocity decrease with rise in the Biot number and particle size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.