Abstract

AbstractImplant materials with micro/nanostructures bear a closer resemblance with the features of natural bone, which influences the wettability, bone differentiation, and vascularization of materials. However, it is still technically challenging to design the inner wall and surface micro/nanostructures on macroporous bioceramics due to their brittleness. In this work, micro/nanostructured composites with Si3N4 whiskers as a framework, and the (inner) surface covered with SiC nanowires were prepared, denoted as SiC‐nw@Si3N4‐w bioceramics. The synthesis, adopting the green chemistry concept, was utilized from environmental products (carbon evaporated in the furnace at high temperature) and reaction impurities (carbon obtained by polymer pyrolysis and silicon obtained by Si3N4 decomposition) to synthesize SiC nanowires via a vapor‐solid growth mechanism. The prepared SiC‐nw@Si3N4‐w bioceramics have potential applications in bone repair due to their cell adhesion and proliferation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.