Abstract

Limited internal phonon coupling and transfer within graphene in the out-of-plane direction significantly affects graphene-substrate interfacial phonon coupling and scattering, and leads to unique interfacial thermal transport phenomena. Through the simultaneous characterization of graphene and SiC Raman peaks, it is possible, for the first time, to distinguish the temperature of a graphene layer and its adjacent 4H-SiC substrate. The thermal probing resolution reaches the nanometer scale with the graphene (≈1.12 nm) and is on the micrometer scale (≈12 μm) within SiC next to the interface. A very high thermal resistance at the interface of 5.30 (-0.46) (+0.46) x 10(-5) Km2 W(-1) is observed by using a Raman frequency method under surface Joule heating. This value is much higher than those from molecular dynamics predictions of 7.01(-1.05) (+1.05) x 10(-1) and 8.47(-0.75) (+0.75) x 10(-10) Km2 w(-1) for surface heat fluxes of 3 × 10(9) and 1 × 10(9) and 1 x 10(10) W m(-2) , respectively. This analysis shows that the measured anomalous thermal contact resistance stems from the thermal expansion mismatch between graphene and SiC under Joule heating. This mismatch leads to interface delamination/separation and significantly enhances local phonon scattering. An independent laser-heating experiment conducted under the same conditions yielded a higher interfacial thermal resistance of 1.01(-0.59) (+1.23) x 10(-4) Km2 W(-1). Furthermore, the peak width method of Raman thermometry is also employed to evaluate the interfacial thermal resistance. The results are 3.52 × 10(-5) and 8.57 × 10(-5) K m2 W(-1) for Joule-heating and laser-heating experiments, respectively, confirming the anomalous thermal resistance between graphene and SiC. The difference in the results from the frequency and peak-width methods is caused by the thermal stress generated in the heating processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.