Abstract

The field of micro-/nanorobotics has attracted extensive interest from a variety of research communities and witnessed enormous progress in a broad array of applications ranging from basic research to global healthcare and to environmental remediation and protection. In particular, micro-/nanoscale robots provide an enabling platform for the development of next-generation chemical and biological sensing modalities, owing to their unique advantages as programmable, self-sustainable, and/or autonomous mobile carriers to accommodate and promote physical and chemical processes. In this review, we intend to provide an overview of the state-of-the-art development in this area and share our perspective in the future trend. This review starts with a general introduction of micro-/nanorobotics and the commonly used methods for propulsion of micro-/nanorobots in solution, along with the commonly used methods in their fabrication. Next, we comprehensively summarize the current status of the micro/nanorobotic research in relevance to chemical and biological sensing (e.g., motion-based sensing, optical sensing, and electrochemical sensing). Following that, we provide an overview of the primary challenges currently faced in the micro-/nanorobotic research. Finally, we conclude this review by providing our perspective detailing the future application of soft robotics in chemical and biological sensing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call