Abstract

Endophytes play an important role in plant growth and stress tolerance, but limited information is available on the complex effects of micro (nano)plastics and phthalate esters (PAEs) on endophytes in terrestrial plants. To better elucidate the ecological response of endophytic bacteria on exogenous pollutants, a hydroponic experiment was conducted to examine the combined impact of polystyrene (PS) and PAEs on endophyte community structure, diversity, and wheat growth. The findings revealed that wheat roots were capable of absorbing and accumulating PS nanoparticles (PS-NPs, 0.1 μm), whereas PS microparticles (PS-MPs, 1 and 10 μm) merely adhered to the root surface. The addition of PAEs resulted in a stronger accumulation of fluorescent signal from PS-NPs in the roots. The dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) were identified in wheat roots, and they could be metabolized to form minobutyl phthalate and phthalic acid, and mono-(2-ethylhexyl) phthalate, respectively. Compared to single PAEs, the concentration of PAEs and their metabolites in the roots treated with PS-NPs showed a great increase, while they exhibited a significant decline in the presence of PS-MPs. Principal coordinate analysis and permutational multivariate analysis of variance demonstrated that PS size were the major factor that induced oxidative damage, and altered the endogenous homeostasis of wheat roots. The increase in PS size positively promoted the relative abundance of dominant endophytes. Specifically, Proteobacteria. Proteobacteria were the most important in the symbiosis survival, which had a great impact on the microbial community and diversity. Therefore, PS and PAEs could affect the endophytes directly and indirectly. Structural equation modeling further implied that these endophytic bacteria, along with antioxidant enzymes such as superoxide dismutase which were regulated by non-enzymatic mechanisms, promoted root biomass increase. These results indicated a synergistic resistance mechanism between antioxidant enzymes and endophytic bacteria in response to environmental stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call