Abstract

Abstract Hollow urchin-like substrates have been widely interested in the field of surface-enhanced Raman scattering (SERS) and photocatalysis. However, most reported studies are simple nanoscale urchin-like substrate with limited light trapping range and complicated preparation process. In this paper, a simple and effective controllable synthesis strategy based on micro-nano hierarchical urchin-like ZnO/Ag hollow spheres was prepared. Compared with the 2D structure and solid spheres, the 3D urchin-like ZnO/Ag hollow sphere has higher laser utilization and more exposed specific surface area due to its special hollow structure, which resulted in excellent SERS and photocatalytic performance, and successfully realize the detection and photodegradation of antibiotics. The limited of detection of metronidazole can reach as low as 10−9 M, and degradation rate achieve 89 % within 120 min. The experimental and theoretical results confirm that the ZnO/Ag hollow spheres can be used in the development of ZnO heterostructure for the detection and degradation of antibiotics, which open new avenues for the development of novel ZnO-based substrate in SERS sensing and catalytic application to address environmental challenges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.