Abstract

Extracting discriminative tool wear features is of great importance for tool wear monitoring in micro-milling. However, due to the dependency on tool runout and cutting parameters, the traditional tool wear features are incompetent to monitor the tool wear condition in micro-milling with significant tool runout and varied cutting parameter interactions. In this study, micro-milling cutting force is represented by a parametric model including variable cutting parameters, tool runout, and tool wear. The cutting force coefficient in the model, which is not only discriminative to the tool wear condition but also independent to the tool runout and cutting parameters, is extracted as the micro-milling tool wear feature. To reduce the computation cost, a fast neural network–based method is proposed to identify the tool runout and the cutting force coefficient from the cutting force signal. Experimental results show that the proposed cutting force coefficient–based approach is efficient to monitor the micro-milling tool wear under varied cutting parameters and tool runout.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.