Abstract

The study of the micro-meteoroid environment is relevant to planetary science and space weathering of airless bodies, as the Moon or Mercury. In fact, the meteoroids hit directly the surfaces producing impact debris and vapor, thus contributing to shape the exosphere of the planet. This work is focused on the study and modelling of the Mercury's Ca exosphere formation through the process of Micro-Meteoroids Impact Vaporization (MMIV). The MESSENGER/NASA mission provided measurements of Mercury's Ca exosphere, allowing the study of its configuration and its seasonal variations. The observed Ca exhibited very high energies, with a scale height consistent with a temperature > 50,000 K, originated mainly on the dawn-side of the planet. It was suggested that the originating process is due to MMIV, but previous estimations were not able to justify the observed intensity and energy. We investigate the possible pathways to produce the high energy observed in the Ca exosphere and discuss about the generating mechanism. The most likely origin may be a combination of different processes involving the release of atomic and molecular surface particles. We use the exospheric Monte Carlo model by Mura et al. (2007) to simulate the 3-D spatial distribution of the Ca-bearing molecule and atomic Ca exospheres generated through the MMIV process, and we show that their morphology and intensity are consistent with the available MESSENGER observations if we consider a cloud quenching temperature < 3750 K. The results presented in this paper can be useful in the exospheric studies and in the interpretation of active surface release processes, as well as in the exosphere observations planning for the ESA-JAXA BepiColombo mission that will start its nominal mission phase in 2026.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.