Abstract

Modern communication and navigation systems are increasingly relying on atomic clocks. As timing precision requirements increase, demands for lower SWaP (size, weight, and power) clocks rise. However, it has been challenging to break through the general trade-off trend between the clock stability performance and SWaP. Here we demonstrate micro mercury trapped ion clock (M2TIC) prototypes integrated with novel micro-fabricated technologies to simultaneously achieve high performance and low SWaP. The M2TIC prototypes could reach the 10^{-14}-stability level in 1 day with a SWaP of 1.1 L, 1.2 kg, and under 6 W of power. This stability level is comparable to the widely used rack-mount Microchip 5071A cesium frequency standard. These standalone prototypes survived regular commercial shipping across the North American continent to a government laboratory, where their performance was independently tested. The M2TIC sets a new reference point for SWaP and performance and opens opportunities for high-performance clocks in terrestrial and space applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call