Abstract
Low cycle fatigue behavior of equiatomic CoCuFeMnNi high entropy alloy was investigated under fully reversible strain control mode followed with detailed microstructural characterization using electron back scatter diffraction. There is an increase in the intragranular misorientation and geometrically necessary dislocation density with increase in the strain amplitude that leads to accumulation of damage and intergranular cracking. The interaction of dislocations with copper rich nano-clusters, solute environment and grain boundaries affect slip reversibility, thereby deciding cyclic deformation behaviour. Annealing twin boundaries are resistant to damage and increasing their population density by grain boundary engineering can improve performance of CoCuFeMnNi alloy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.