Abstract

The development of adsorbents with outstanding adsorption capacities, wide versatility, and excellent recyclability for the removal of organic dyes remains a challenge. In this study, a quaternised chitosan-based aerogel (QCSA) was fabricated via a facile method to effectively treat concomitant anionic dyes. Porous QCSA with high hydrophilicity, nontoxicity, excellent thermal stability, and sustainability exhibits adsorption properties superior to most previously reported adsorbents. The equilibrium adsorption capacities for Congo red, Sunset yellow, and Methyl orange were 1259.6, 550.2, and 607.5 mg/g, respectively. Notably, the spent QCSA exhibits excellent cyclic performance. The multilayer adsorption, external–internal mass transfer resistance, and adsorption on the active site models were employed to enable a more accurate description of the dynamic characteristics, confirming that double-layer chemisorption was the dominant process. A quantitative analysis of the electrostatic potential and the independent gradient model further verified that electrostatic interactions, hydrogen bonding, and van der Waals forces led to the highly efficient adsorption of dye molecules. Therefore, the eco-friendly and recyclable QCSA is a promising adsorbent for trapping anionic dyes from aquatic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.