Abstract

In this work we are interested in how micromechanical phenomena affect bulk mechanical properties. Specifically we are interested in microfracture characteristics and how they influence damage evolution and fracture toughness. Toward this end, quantitative acoustic emission techniques were used to measure microfracture properties in an array of cement-based materials of varying microstructure. Microcracks were modeled using a seismic moment tensor, which could be estimated through deconvolution of the measured acoustic emission waveforms. Results of the experiments indicate that materials with higher bulk fracture toughness had larger numbers of sliding mode microcracks, while materials with lower bulk fracture toughness had fewer numbers of tensile mode microcracks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.