Abstract
We provide a practical demonstration that it is possible to systematically generate a variety of high-performance micro-kernels for the general matrix multiplication (gemm) via generic templates which can be easily customized to different processor architectures and micro-kernel dimensions. These generic templates employ vector intrinsics to exploit the SIMD (single instruction, multiple data) units in current general-purpose processors and, for the particular type of gemm problems encountered in deep learning, deliver a floating-point throughput rate on par with or even higher than that obtained with conventional, carefully tuned implementations of gemm in current linear algebra libraries (e.g., BLIS, AMD AOCL, ARMPL). Our work exposes the structure of the template-based micro-kernels for ARM Neon (128-bit SIMD), ARM SVE (variable-length SIMD) and Intel AVX512 (512-bit SIMD), showing considerable performance for an NVIDIA Carmel processor (ARM Neon), a Fujitsu A64FX processor (ARM SVE) and on an AMD EPYC 7282 processor (256-bit SIMD).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.