Abstract

In computational linguistics, binary sentiment analysis methods have been proposed to predict whether a document expresses a positive or a negative opinion. In this paper, we study a unique research problem—identifying environmental stimuli that contribute to different moods (mood triggers). Our analysis is enabled by an anonymous micro-journalling dataset, containing over 700,000 short journals from over 67,000 writers and their self-reported moods at the time of writing. We first build a multinomial logistic regression model to predict the mood (e.g., happy, sad, tired, productive) associated with a micro-journal. We then examine the model to identify predictive words and word trigrams associated with various moods. Our study offers new data-driven insights into public well-being.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.