Abstract

Sucrose (Suc) is the major transport sugar in plants and plays a primary role as an energy source and signal in adaptive and stress responses. An ability to quantify Suc over time and space would serve to advance our understanding of these important processes. Current technologies used for Suc mapping are unable to quantitatively visualize its distribution within tissues. Here, we present an infrared-based microspectroscopic method that allows for the quantitative visualization of Suc at a microscopic level of resolution (∼12 µm). This method can successfully model the sugar concentration in individual vascular bundles and within a complex organ such as the stem, leaf, or seed. The sensitivity of the assay ranges from 20 to 1,000 mm We applied this method to the cereal crop barley (Hordeum vulgare) and the model plant Arabidopsis (Arabidopsis thaliana) to highlight the potential of the procedure for resolving the spatial distribution of metabolites. We also discuss the relevance of the method for studies on carbon allocation and storage in the context of crop improvement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.