Abstract

This paper presents the use of micro-hotplates (MHPs) as thermal processing and in situ characterization platforms for phase transformations in thin films. MHPs are fabricated by microsystem technology processes and consist of a SiO 2/Si 3N 4 membrane (app. 1 μm) supported by a bulk Si frame. Several embedded Pt thin films serve as heater and electrical measurement electrodes. It is shown that the MHPs have unique properties for the controlled annealing of thin film materials (up to 1270 K), as the annealing temperature and heating/cooling rates can be precisely controlled by in situ measurements. These rates can be extremely high (up to 10 4 K/s), due to the low thermal mass of MHPs. The high cooling rates are especially useful for the fabrication of metastable phases (e.g. Fe 70Pd 30) by quenching. By measuring the resistivity of a thin film under test in situ as a function of the MHP temperature, microstructural changes (e.g. phase transformations) can be detected during heating and cooling cycles. In this paper, examples are presented for the determination of phase transitions in thin films using MHPs: the solid–liquid–gas phase transition (Al), the ferromagnetic–paramagnetic phase transition (Fe–Pt) and martensitic transformations (Ni–Ti–Cu, Fe–Pd). Furthermore, it is demonstrated that crystallization processes from amorphous to crystalline (Ni–Ti–Cu) can be detected with this method. Finally the application of MHPs in thin film combinatorial materials science and high-throughput experimentation is described.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.