Abstract

Machining of thin metal foils with specially contoured diamond cutting tools allows the production of small and very smooth fluid microflow channels for micro heat exchanger applications. Heat exchanger plate wall thickness, as well as fin dimensions, may be carefully controlled and machined to dimensions on the order of tens of micrometers. The plates are stacked and bonded with the vacuum diffusion process to form a cross-flow, plate-type heat exchanger. These fabrication techniques allow the production of small heat exchangers with a very high volumetric heat transfer coefficient and inherent low weight. The design and fabrication process for a copper-based, cross-flow micro heat exchanger has been developed. The micro heat exchanger provided a volumetric heat transfer coefficient of nearly 45 MW/m 3 K under very conservative deisgn and operating conditions. This corresponds to a volumetric capacity nearly 20 times that of more conventional compact heat exchangers. High thermal capacity, coupled with low cost and ease of production, make these devices practical in areas where high thermal flux in a small volume is required. The methods and procedures for this type of micromachining closely parallel those for precision machining.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.