Abstract
An electroformed, three-dimensional stylus Paul trap was designed to confine a single atomic ion for use as a sensor to probe the electric-field noise of proximate surfaces. The trap was microfabricated with the UV-LIGA technique to reduce the distance of the ion from the surface of interest. We detail the fabrication process used to produce a 150 μm tall stylus trap with feature sizes of 40 μm. We confined single, laser-cooled, (25)Mg(+) ions with lifetimes greater than 2 h above the stylus trap in an ultra-high-vacuum environment. After cooling a motional mode of the ion at 4 MHz close to its ground state (<n> = 0.34 ± 0.07), the heating rate of the trap was measured with Raman sideband spectroscopy to be 387 ± 15 quanta/s at an ion height of 62 μm above the stylus electrodes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Review of Scientific Instruments
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.