Abstract

New bimetal magnesium/aluminium macrocomposites containing millimeter-scale Al based core reinforcement were fabricated using solidification processing followed by hot coextrusion. The initial macrocomposite consisted of a combination of pure Mg shell and pure Al core. Some problems encountered with the macrocomposite were Mg and Al grain coarsening, an inadequate Mg-Al interface (macrointerface) and consequent reduction in strength, compared to monolithic Mg. To rectify these problems, three approaches were taken in the following order primarily to widen (strengthen) the Mg-Al interface: (a) pouring of pure Al at 900°C (higher temperature approach), (b) pure Mg shell substitution with AZ31 shell (single substitution approach) and (c) pure Mg shell and pure Al core substitution with AZ31 shell and AA5052 core, respectively (double substitution approach). The evolution (strengthening) of the Mg-Al interface and its effect on microstructure and mechanical properties in each macrocomposite is investigated in this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call