Abstract

Micro-electro-discharge drilling ([Formula: see text]EDD) is a type of non-traditional machining process used for drilling micro-holes of desired dimensions with a high aspect ratio. But, there are no such research works that could have explained the desired accurate circular shape of micro-holes. The need for a more advanced hybrid machining process to improve the overall efficiency in terms of mainly desired circular shape and radial overcut is evolved. In this research work, an electromagnetic field force-assisted micro-EDM process has been carried out on Inconel 800 with a copper tool of 450[Formula: see text][Formula: see text]m. Experimental results showed that measured metal removal rate and tool wear rate decreased for ascending values of magnetic flux density, peak current and gap voltage, whereas circularity increases linearly with an increase in magnetic flux density and also the effects of magnetic field on circularity of micro-holes on Inconel 800 are more predominant than other parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.