Abstract
Stick-slip behavior, a common problem of contact under severe lubrication, is closely related with surface topography. To investigate the influence of surface topography types on stick–slip behavior, micro-dimple and micro-bulge textures, typical concave and convex topographies, were fabricated by pulse picosecond laser and CW fiber, respectively. A gyroscope sensor was mounted on the pin-on-disc modular of multifunctional tribometer to conduct friction dynamics tests. The intensity of stick–slip behavior is characterized by the amplitude and duration of stick–slip behavior. The results show that, under the same starved lubrication, the micro-bulge textured disc showed the lowest intensity while the untextured one showed the highest intensity. In comparison with micro-dimple and micro-bulge textured disc exhibits higher efficiency in inhibiting stick–slip behavior as well as starting stable sliding. The mechanism of inhibiting stick–slip behavior for micro-dimple textures is generated by trapping wear debris and forming effective oil film. However, the cause of micro-bulge textures is the reduced contact area, which result in the reduction of the propensity of secondary plateaus, plastic flow, and adhesive junctions between asperities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.