Abstract

Uniaxial orientation is highly desirable for fabricating advanced soft materials. Liquid crystal (LC) polymer deposition was strategically manipulated at the air-LC interface, by controlling the drying temperature and initial concentration of aqueous solution of xanthan gum in a limited space. Interface-assisted orientation led to membrane-like depositions bridging the millimeter-scale gap between the substrates both, vertically and horizontally. The applicability of this approach lies in synchronization of the molecular orientation beyond their individual LC domains into the condensed state. Cross-polarized microscopy and SEM analysis correlated the orientation of the deposited polymer with the controlled mobility of xanthan gum LC domains at the evaporative interface. Subsequently, a phase diagram was prepared for the variety of oriented structures, depending upon the drying conditions. The deposited membrane behaved as an oriented hydrogel showing reversible anisotropic swelling/deswelling only along its thickness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.