Abstract

Ultrasonic inspection is a widely used nondestructive testing approach in industrial fields for more accurate life prediction and efficient management strategies of critical structural components. However, it is quite challenging to detect a kind of micro-defect, whose size is much smaller than the ultrasonic wavelength but larger than the ultrasonic amplitude (namely, there is no appearance of non-classical acoustic nonlinearity). In this article, identification and imaging of a micro-defect of this size range with an improved resolution is conducted by the combination of the second-harmonic generation (SHG) of ultrasonic Lamb waves and the reconstruction algorithm for the probability inspection of damage. An intuitive model is first developed to explore the physical mechanism of a micro-defect-induced variation of generated second harmonic of a primary Lamb wave in a plate. Variations of amplitudes of second harmonics generated in propagation paths are used to construct the micro-defect image. A phase-reversal technique is employed to enhance the signal-to-noise ratio of the SHG. Comparisons between images constructed by linear and nonlinear acoustic features of Lamb wave propagation are presented. Results show that the image of the micro-defect with an improved resolution is successfully obtained by the proposed approach, while there is no visualized result obtained by the conventional linear ultrasonic one.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call