Abstract

Introduction Dobutamine (DOB) stress in animal models of heart disease has been imaged so far using echocardiography and magnetic resonance imaging. The purpose of this study was to assess normal response to DOB stress in rats using anatomical and functional data using micro-computed tomography (CT). Methods Ten normal adult male rats were first injected with a liposomal-based blood pool contrast agent and next infused with DOB via a tail vein catheter. Using prospective gating, 5 pairs of systole/diastole micro-CT images were acquired (a) pre-infusion baseline; (b) at heart rate plateau during infusion of 10 μg/kg/min DOB; (c) at post-DOB infusion baseline; (d) at heart rate plateau during infusion of 30 μg/kg/min DOB; and (e) after post-infusion return to baseline. Heart rate, peripheral and breathing distensions were monitored by oximetry. Micro-CT images with 88-μm isotropic voxels were segmented to obtain cardiac function based on volumetric measurements of the left ventricle. Results DOB stress increased heart rate and cardiac output with both doses. Ejection fraction increased above baseline by an average of 35.9% with the first DOB dose and 18.4% with the second dose. No change was observed in the relative peripheral arterial pressures associated with the significant increases in cardiac output. Discussion Micro-CT proved to be a robust imaging method able to provide isotropic data on cardiac morphology and function. Micro-CT has the advantage of being faster and more cost-effective than MR and is able to provide higher accuracy than echocardiography. The impact of such an enabling technology can be enormous in evaluating cardiotoxic effects of various test drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.