Abstract

Morphological analysis of pulverized coal char particles using two-dimensional (2-D) cross-sectional imaging has been widely employed, but its accuracy has not been adequately assessed. In this study, pulverized coal char particles are imaged in three dimensions (3-D) using high-resolution X-ray microcomputed tomography (micro-CT). Particle volume, macropore volume, and macroporosity are measured in three dimensions and analyzed as a function of distance from the particle center using averaging at each radial location. A technique for extracting each particle’s average wall thickness, another morphological parameter used for classification, is also presented based on micro-CT imaging. When applied to pulverized bituminous coal char particles, the micro-CT-based analysis revealed a similar spatial distribution of macroporosity among a population that would typically be classified as containing both group II (mixed porous-solid) and group III (dense) particles. Wall thicknesses determined by micro-CT were g...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call