Abstract

Abstract The sound of food is of influence on how its flavour is perceived. Although rarely studied in psychoacoustics, cheese may have a resonating internal structure in the audible spectrum. It has been speculated that this structure or small bubbles that are formed as a result of fermentation are responsible for creating audible acoustic responses. The purpose of this study was to design a mechanical methodology to create audible acoustics from cheese samples and to quantify bubble presence in a sample. One hundred and two samples of mozzarella cheese with 1.5±0.4-cm3 volumes were subjected to shear from a wetted steel blade, whilst orthogonal force, blade acceleration, and acoustic response were continuously monitored. In addition, micro-computed tomography was performed. It was found that under our measurement conditions, mozzarella was forced to squeak in 10% of the experiments, at fundamental squeak frequencies up to 2 kHz, which indicates that the acoustics come from a resonating porous structure, rather than from resonating bubbles. The micro-computed tomography showed a bubble density of 51 cm−3. This low bubble density may account for the absence of a high-frequency component in the spectra analysed. Our results confirm the presence of small bubbles in squeaky mozzarella, but these generate frequencies much higher than those recorded.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.