Abstract

AbstractClays have been used widely as sorbents of potentially toxic elements, especially Pb. However, their adsorption efficiency has been studied mostly under static experimental conditions, which are labour-intensive. In this study, dynamic adsorption experiments were established using micro-columns to assess the adsorption behaviour of natural Fe-Mg-rich clays for Pb ions by varying the inlet solution pH, Pb concentration and flow rate. The clays, consisting of varying amounts of palygorskite and Fe-smectite, were diluted with quartz (Qz) sand to enhance their permeability. Greater adsorption capacity was observed for the mixed palygorskite/Fe-smectite-rich clay beds (45.2 ± 0.01 mg g–1) followed by the Fe-smectite-rich (35.7 ± 0.07 mg g–1) and palygorskite-rich (20.0 ± 0.03 mg g–1) clay beds. The results indicated that the greater adsorption efficiency of palygorskite/Fe-smectite-rich clays could be attributed to synergistic effects due to the coexistence of palygorskite and Fe-smectite clay phases, which have distinct physicochemical characteristics. Moreover, the results obtained showed good agreement with the static experiments, implying that the use of micro-columns could describe adsorption adequately over shorter experimental times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.