Abstract

AbstractWe investigate a class of linear relay feedback systems with bang-bang control and with the control input applied at discrete time instances. Using a third order system as a representative example we show that stable oscillations with so-called sliding motion, with sliding present in continuous time system, loose the sliding segment of evolution, but do not loose their stability if the open loop system is stable. We then carry on our investigations and consider a situation when stable self-sustained oscillations are generated with the unstable open loop system. In the latter case a transition from a stable limit cycle to micro-chaotic oscillations occurs. The presence of micro-chaotic oscillations is shown by considering a linearised map that maps a small neighbourhood of initial conditions back to itself. Using this map the presence of the positive Lyapunov exponent is shown. The largest Lyapunov exponent is then calculated numerically for an open set of sampling times, and it is shown that it is positive. The boundedness of the attractor is ensured for sufficiently small sampling times; with the sampling time tending to zero these switchings become faster and they turn into sliding motion. It is the presence of the underlying sliding evolution that ensures the boundedness of the chaotic attractor. Our finding implies that what may be considered as noise in systems with digital control should actually be termed as micro-chaotic behaviour. This information may be helpful in designing digital control systems where any element contributing to what appears as noise should be suppressed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.