Abstract

Electrochemical micromachining (EMM) appears to be a very promising micromachining technique in nearby future. Use of copper as a conductive material in microchips needs generation of complex profiles in copper foil. EMM can be utilised for generating micro-profiles in copper foils, which urgently needs a lot of investigation. For fulfilling various research objectives and needs of EMM, the present research highlights the development of EMM system setup and feasibility study of machining micro-channels. Experimental investigation on the developed EMM setup considering the influence of process parameters on micromachining criterion have been performed based on Taguchi method of robust design. From the results, optimal parametric settings for the responses are electrolyte concentration of 50 g/l, applied voltage of 7 V, frequency of 30 kHz, duty factor of 0.15 and tool feed rate of 312.5 mm/s. Second order regression equations have also been developed to search out the best parametric combination for achieving different micromachining characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.