Abstract

Three-dimensional (3D) visualization in water is a technique that, in addition to macroscale visualization, enables micro- and nanoscale visualization via a microfabrication technique, which is particularly important in the study of biological systems. This review paper introduces micro- and nanoscale 3D fluid visualization methods. First, we introduce a specific holographic fluid measurement method that can visualize three-dimensional fluid phenomena; we introduce the basic principles and survey both the initial and latest related research. We also present a method of combining this technique with refractive-index-matched materials. Second, we outline the TIRF method, which is a method for nanoscale fluid measurements, and introduce measurement examples in combination with imprinted materials. In particular, refractive-index-matched materials are unaffected by diffraction at the nanoscale, but the key is to create nanoscale shapes. The two visualization methods reviewed here can also be used for other fluid measurements; however, because these methods can used in combination with refractive-index-matched materials in water, they are expected to be applied to experimental measurements of biological systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call