Abstract

Titanium dioxide has recently attracted attention as an anode material for use in lithium-ion batteries, owing to its high reversible capacity and durable charge/discharge characteristics. The aim of the study is to combine micro-arc oxidation (MAO) and post-alkali treatment to realize an anatase titanium dioxide (TiO2) scaffold layer on titanium plates. Using this combination, coexisting micro- and nanomorphology can be realized in the TiO2 layer. This increases the specific surface area of the TiO2 layer and thereby improves the charge capacity and charge/discharge rate of the anode. The effectiveness of MAO to fabricate a micrometer-scale porous TiO2 structure on titanium plate, and the formation of nano-flakes by alkali treatment on porous anatase TiO2 layer was demonstrated. Further, numerous 40–80nm alkali-treatment-induced nano-flakes grew all over the oxide surface, substantially increasing its specific surface area. The measured electrochemical properties demonstrate that at potentials of −1.98V and −0.56V vs. Ag/AgCl, lithium ions were respectively inserted into and extracted from the TiO2 layer with nano-flakes. The nano-flakes promote faster lithium-ion insertion and extraction and higher associated number of charge than the MAO TiO2. The detailed charging/discharging kinetic processes of the MAO, annealed MAO, alkali-treated MAO, and annealed and alkali-treated MAO specimens were determined using electrochemical impedance spectroscopy, thus providing further insight into the performance of the TiO2 coating.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call