Abstract

Pectin-based biocomposite hydrogels were produced by internal gelation, using different hydroxyapatite (HA) powders from commercial source or synthesized by the wet chemical method. HA possesses the double functionality of cross-linking agent and inorganic reinforcement. The mineralogical composition, grain size, specific surface area and microstructure of the hydroxyapatite powders are shown to strongly influence the properties of the biocomposites. Specifically, the grain size and specific surface area of the HA powders are strictly correlated to the gelling time and rheological properties of the hydrogels at room temperature. Pectin pH is also significant for the formation of ionic cross-links and therefore for the hydrogels stability at higher temperatures.The obtained results point out that micrometric-size hydroxyapatite can be proposed for applications which require rapid gelling kinetics and improved mechanical properties; conversely the nanometric hydroxyapatite synthesized in the present work seems the best choice to obtain homogeneous hydrogels with more easily controlled gelling kinetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.