Abstract

AbstractBACKGROUND: The goal of this work was to establish the minimum degree of epoxidation needed to develop nanostructured epoxy systems by modification with poly(styrene‐block‐butadiene‐block‐styrene) (SBS) triblock copolymers epoxidized to several degrees, and also to investigate the effect of polystyrene (PS) content on the final morphologies. By using two SBS copolymers, the influence of the weight ratio of the two blocks on the generated morphologies and mechanical properties was also analysed.RESULTS: Nanostructured thermosets were effectively obtained through reaction‐induced microphase separation of PS blocks from the matrix. A minimum of 27 mol% of epoxidation, which corresponds to 4.8 wt% of epoxidized polybutadiene (PB) units in the overall mixture, was needed to ensure nanostructuring of final mixtures and thus their transparency. Hexagonally ordered nanostructures were achieved for PS contents of around 16–20 wt%, which agrees with our previous results for mixtures with other SBS copolymers with different ratios between blocks. The fracture toughness of the epoxy matrix was improved or at least retained with mixing.CONCLUSION: The degree of epoxidation of PB blocks needed to switch epoxy/SBS mixtures from a macrophase‐separated to a nanostructured state has been established. The generated morphologies in the epoxy systems are mainly dependent on the PS content in the mixture. Copyright © 2008 Society of Chemical Industry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.