Abstract

The paper presents the macroelement (Al, Ca, Cu, Fe, K, Mg, Mn, Na, P, and Zn) and microelement (As, Cd, Co, Cr, Hg, Mo, Ni, Pb, and Sn) contents found in the liver of wild animals (boar and deer) and farm animals (rabbit, chicken, duck, cow, goat, and turkey). Statistically, the differences in element contents between the two groups were not significant (at p = 0.05), with the exception of Fe, K, Mg, Cd, Hg, Mo, and Pb. The liver of farm animals contained more Al, Cu, K, Mg, Na, Cr, and Sn, while the content of the remaining elements was higher in wild animals. An analysis of correlations between element content and age in wild animals (boar) showed that Pb and Al content increases with age, while Na and Cr contents decrease significantly. Comparisons between the test results and the maximum limits allowed by law showed that, in the case of wild animals, the regulatory limits were exceeded in 18% (for Cd and Cu) and 9% (for Hg) of the liver samples analyzed. In the case of farm animals, the limits for micro- and macroelement contents were not exceeded. The hazard index (HI) values for farm animals were lower than for wild animals, with regard to consumption by both children and adults. Based on the HI values calculated, it seems recommendable that consumption of the liver (preferably from farm animals) by children be limited to once weekly. For adults, the liver can be a valuable source of elements such as Zn, Fe, and Cr, which may be an indication for more frequent consumption.

Highlights

  • The content of particular elements in various parts of the environment typically attracts much attention, and may even stir up emotion when viewed in the context of potential impact on living organisms, and especially on human health (Kicińska 2019)

  • The collected material was used to: a) determine the total content of the selected macroelements (Al, Ca, Cu, Fe, K, Mg, Mn, Na, P, Zn) and microelements (As, Cd, Co, Cr, Hg, Mo, Ni, Pb, Sn); b) identify differences in the content of these elements between wild and farm animals, as well as between the studied species; Environ Monit Assess (2019) 191: 132 c) compare the test results with the regulatory limits for food and with data reported by other authors; and d) calculate the health risk involved in eating liver from both animal groups, associated with the content of selected elements (Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, and Zn), for children and adults

  • A comparison of mean macroelement content found in the livers of wild and farm animals showed no significant differences (Fig. 1a–c)

Read more

Summary

Introduction

The content of particular elements in various parts of the environment typically attracts much attention, and may even stir up emotion when viewed in the context of potential impact on living organisms, and especially on human health (Kicińska 2019). The collected material was used to: a) determine the total content of the selected macroelements (Al, Ca, Cu, Fe, K, Mg, Mn, Na, P, Zn) and microelements (As, Cd, Co, Cr, Hg, Mo, Ni, Pb, Sn); b) identify differences in the content of these elements between wild and farm animals, as well as between the studied species (boar, deer, rabbit, chicken, cow, and goat); Environ Monit Assess (2019) 191: 132 c) compare the test results with the regulatory limits for food and with data reported by other authors; and d) calculate the health risk involved in eating liver from both animal groups, associated with the content of selected elements (Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, and Zn), for children and adults.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call